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Mare basalt 15388, a feldspathic microgabbro [1] from the Apennine Front, is chemically and
petrographicaUy distinct from Apollo 15 picritic, olivine-normative (ON) and quartz-normative basalts [2]. The

evolved chemistry, coarse texture, lack of olivine, and occurrence of cristobalite in 15388 argue for derivation by a
late-stage magmatic process that is significantly removed from parental magma. It either crystallized from a

magma evolved from the more mafic Apollo 15 basalts, or it crystallized from a currently unrepresented magma.

Rb-Sr and Sm-Nd isotopic systematics [3] yield isochron ages of 3.391 + 0.036 and 3.42 + 0.07 Ga, respectively,

and ENd = 8.6 _'1=2.4, which is relatively high for Apollo 15 mare basalts. In contrast to chemical patterns of

average Apollo 15 ON basalts and Apollo 15 picritic basalt (Figure 1), 15388 has a strongly positive LREE slope,
high Ti, shallower HREE slope and a slightly positive Eu anomaly. These features argue against 15388 evolution

by simple olivine fractionation of a parental ON or picritic basalt magma although olivine is a dominant liquidus
phase in both potential parents.
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Modal mineralogy suggests that the
chemistry may be explained by accumulation of

observed minerals pyroxene ("bow" shaped
REE), ilmenite (high Fe, Ti), and plagioclase (Eu

anomaly) from an evolved ON magma [4]. In

this scenario, elevated trace element abundances

would require at least 88% crystallization prior
to 15388 accumulation, but 15388 is not

significantly depleted in Mg, Cr, Co, etc., as

would be expected after much evolution by mafic
mineral (and plag) fractionation. This
discrepancy could be related to successive

batches of ON magma reintroduced into, and

mixing with, the evolving 15388 parental
magma; however, enrichments of LILE would

become diluted by Iow-LILE magma. One possibility is to assume that crystallization prior to 15388 cumulate
deposition was essentially an equilibrium process throughout the crystallization history. Extensive fractionation of

LILE in the original magma would be allowed, yet compatible elements would not be severely depleted.
Alternatively, extensive fractionation of the primary magma may not be required such that elevated LILE in the

15388 cumulate can be related to entrapment of small amounts of the evolving liquid into the crystalline mush.

In order to demonstrate the possibility of 15388 being non-exotic relative to other Apollo 15 basalts,

petrologic models assume that later stage cumulate phases contributed to the bulk chemical signature and the most

likely parental magma was equivalent to an Apollo 15 ONB, the compositions of which span a fairly restricted

range controlled by ~10 percent olivine fractionation [2]. The actual precursor magma composition could be any

of the ON basalts, the only difference being amount of olivine crystallization. Other potential models, including
any that depict 15388 as a primary magma or a cumulate from some unknown Apollo 15 magmatic composition,

introduce complexities that are possibly nones_ntial to 15388 petrogenesis. Source hybridization models, using

technique of [5], yielded no viable mechanisms by which the trace element pattern of 15388 could be derived as a

primary mafic magma, albeit a normative olivine-free one. Models (Table l) predict the major element

composition by accumulation of 15388 mineralogy from an evolved ON composition using crystal/liquid molar

partition coefficients appropriate to low alkali systems [6J. Trace element partition cocfficients are those used by
[5], except for pyroxene [7].

In model #1 (Figure 2), an ON magma first evolves by 75% equilibrium crystallization of 12% ol + 62%

px + 26% pl, the normative mineralogy of an average ON basalt. From this liquid, accumulation of 59% px + 31%
pl + 10% ilm closely reproduces the observed 15388 major element composition in Table 1. Within errors

associated with the average ON composition used as a primary magma, trace element abundances are not predicted

by this scenario. Also, precursor crystallization using an equilibrium process involving normative mineralogy is
excessive and presents an unlikely petrologic scenario.
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Model #2 yields a better

prediction of 15388 chemistry and a more
reasonable amount of precursor crystal-

lization of the primary magma. Because

the 15388 composition lies very close to

the olivine control line [2] for the ON

series, evolution of the primary magma

was probably related to olivine-only

crystallization. After 24% olivine (step-

wise equilibrium) crystallization of the

ON basalt magma, a modeled accumu-
lation of 59% px + 30% pl + 11% ilm

closely predicts the major element

composition of 15388 but fails to yield an

appropriate trace element signature.
Addition of 6% trapped liquid to this

cumulate does not appreciably change

major element abundances, yet provides a

reasonable approximation, within
observed uncertainties, of the trace

element signature.
Drawbacks to model #2 are

unpredicted Th and Cr abundances.
Trace element signatures (Figure 1)

suggest that Th in 15388 cannot be
related to any process of closed system

evolution of ON magma unless a phase

compatible to Th and incompatible to

Table I. IModel #I IModel #2

15388 O?IB [Crystall. ICumulate ]Crystall. ICumulate I+TL

SiO 2 (%) 44.2 45.9 42.4 43.4 48.6 42.8 43.3

TiO 2 5.9 2.1 7.7 5.9 2.8 5.8 5.5

AI203 11.1 8.9 4.3 11.8 11.7 11.4 11.5

FeO 19.8 21.8 27.5 20.4 19.3 20.9 20.7

MnO 0.35 0.35 0.44 0.33 0.31 0.34 0.34

MgO 8.0 10.9 4.1 7.8 4.0 7.9 7.6

CaO 10.2 9.5 12.3 10.0 12.3 9.8 10.1

Na20 0.32 0.26 1.01 0.20 0.34 0.07 0.20

K20 -- (est.) 0.04 0.16 0.06 0.05 0.01 0.07

Cr20 3 0.34 0.59 0.09 0.11 0.62 0.78 0.77

Sc (ppm) 48.6 40.4 40.0 43.8 49.3 48.4 47.8

Co 41.9 52.5 45.6 55.9 35.5 35.3 35.1

HI" 1.82 2.32 8.11 1.15 3.04 1.14 1.54

Th 0.43 0.55 2.18 0.07 0.72 0.07 0.19

La 1.75 4.8 18.3 0.98 6.32 0.73 1.8

Ca 5.0 12.8 48.6 2.8 16.9 2.3 5.1

Sm 1.89 3,25 11.30 1.44 4.68 1.60 2.16

Eu 0.84 0.83 1.61 0.84 1.15 0.90 0.96

Tb 0.58 0.80 2.68 0.42 1.15 0.48 0.60

Yb 1.98 2.12 6.58 1.57 3.01 1.62 1.90

Lu 0.30 0.31 0.95 0.25 0.44 0.24 0.28

LREE is present. Assuming the reported
value of Th is correct, the only possible alternatives would have to include contamination by an unrepresented

composition. Cr values may be less difficult to predict by assuming either a small amount of chromite was
included in the initial ol crystallization or that Cr partitioning in ol was higher. Modeling supports a cumulate

scenario; however, the depleted nature of the LREE is consistent with direction but not the degree of end. The

chemical model suggests that an open system is not a significant requirement for 15388 evolution, but the

discrepancy in Th prediction, high eNd, and the trapped liquid requirement argue for a possible exotic component.
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